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Introduction

@ Attempts to describe Yang mills theory in terms of Gauge
invariant Wilson loops.
e Non-local.
o Over-complete.

@ We will describe gauge theory in 'dual’ electric loop
representation.

e local
e complete.
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The plan of the talk.

@ A quick look at Hamiltonian LGT .
@ Point split lattice - PSlattice.
© Local gauge invariant states.
@ Path integral in phase space.
@ Weak coupling limit and mass gap.
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Hamiltonian SU(2) Gauge theory on a lattice

(Kogut and Susskind, 1976)
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e E;/Er € SU(2) algebra.
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Hamiltonian SU(2) Gauge theory on a lattice continued..

e Hamiltonian is:
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e Gauss law operator generates gauge transformations at each site.
e Gauss law says: at each site, incoming electric flux = outgoing

electric flux.
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Gauge invariant, local Hilbert space
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(Ramesh Anishetty and H. S. Sharatchandra,PRL,65, 813 (1990))
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Splitting of point

q ¢
*
-

e Split the site into two sites and introduce a new link.

e Introduce Link operator and link constraint at the new link.
e All sites have 3 links and Gauss law constraint at each site.
e Dynamics is much more transparent on the split lattice.

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))

Sreeraj T P Weak coupling limit of 2 4 1, SU(2) lattice gauge theory and m



PS-lattice=original lattice

e PS lattice reduces to the original lattice by a gauge fixing.
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PS-lattice

e Lattice after splitting each site: e plaquette — octagon
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e 3 possible point splitting schemes at each site — large number of
unitarily equivalent Hilbert spaces.

Sreeraj T P Weak coupling limit of 2 4 1, SU(2) lattice gauge theory and m



Schwinger Bosons.

[ ] EL7 U, Er — a];(L), aL(R)

;al,(L/R)— Harmonic oscillator doublets!

32(’-) N = Ngp 3L(R)
0 - (]
E} L= R E3
E =al(L)FalL), ER = a'(R)%-a(R)

SO

(prepotential rep)

U= ;( ab(L)  a(L) ) < al(R)  al(R) );
VA1 \ —al(l) a(l) 2(R) -a(R) ) \/i+1
U pA

[Manu Mathur, J.phys A(2005), Phys. Lett. B (2007), Nucl.Phys.B(2007)
Ramesh Anishetty, Manu Mathur, Indrakshi. R, JI\/IP(2009),J.Phys(2009),JMP(2010)]

eUnder gauge transformations:
U — ALUAL
a(L) — Aca(L) , a(R) — Ara(R)
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Gauge invariant basis with Schwinger Bosons

o At a 3-vertex:

e Normalized gauge invariant states at a 3-vertex:

(af[1]eal [I)™ (at[Teal 3™ (a'[3]eal [1))™
V(hi + b1+ k3 + D(h1) (1) (hs)!

[hi, 3, 1) = |0) = |n1, 1, n3 = m)

e n1, ng, n3 gives the number of harmonic oscillators on the link 1,1, 3.

n=ha+ n2 = b3+ h2 n3=m= k1 + b3

(Ramesh Anishetty and T P Sreeraj, PRD, 97, 074511 (2018))
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e Equivalent descriptions based on:

O Jj satisfying the link condition :
hila] + k3[a] = n3(= m) = h2[b] + 3[b]

li into a link = /; going out == Closed Electric flux loops.

@ n;, m -local quantum numbers satisfying triangle inequalities
at each site:
|ni — n;| < m < nj +n;

Sreeraj T P Weak coupling limit of 2 4 1, SU(2) lattice gauge theory and m



Action of Hamiltonian on the number basis.

° E,-2 = % % + 1) diagonal.
e TrU, = TrU, changes n;, m at each link along a plaquette by +1
+
TrU, ’ ‘ = C i’ ‘i
+
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Phases

e We define phase operators satisfying : [N;, e"‘g] = e [M, eX] = &%

eX 0\ (D F\([e? 0
Ton\n,-,n,T,m>—TrH(0 e_">A<> (F D) 0 —id |ni, iz, m)

oct

D= (ni+n;+m+3)(nj—n;+m+1) Fo (n;—ni+m+1)(n;+n—m+1)
4(m+1)(n + 1) ; 4(m+1)(n; +1)
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Path integral in phase space

e Path integral is constructed in phase space by usual time slicing and
sandwiching eigenbasis of the number and phase basis.
e Path integral in phase space is :

/ D(ZS, DX Z e7 [dt[ [ (n1¢1+n2¢2+mx)+% (n%(s)Jrng(s))] % ; |:27Tr( l:[t P)]:|

ny,n2,m

n1, n2, m should satisfy triangle inequality.
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Weak coupling analysis

e When g — 0, (n1) = (m) = N, (m) =2N, N large ,¢;, x small

gives
(GO ) - 6D o

(ni + nz +m+3)(n; — n; +m+1)
4(m+1)(n; +1)

F\/(n;n;+m+1)(n;+n;m+1) o1
B 4(m+1)(n; + 1) 2V/N

attains the minimum of the magnetic term.
e Splitting fields into mean field and fluctuations.
nj=N+f; m=2N+m
D ~ o(1) F ~ o(1/2V'N) (2)

e Redefine ¢;, x — goi, gx.
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Weak coupling Vacuum

e (m)=(m)=N,(m)=2N N
= all electric flux into a site in x
direction goes to y direction and vice -.2N
versa N N

—> small electric loops.

e Vacuum dominated by small (spatially) electric flux loops containing huge

fluxes.

(in the unsplit lattice)
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Fluctuations

e Dominant fluctuations:

_|_ ... Each flip gives a factor of SN

I7
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e We now make an expansion in % and g. After a few field
redefinitions gives :

2-1(I]P)] ~ [4N2 24 V(61,62 X)| (3)

2
V(¢p1,d2,x) = g2{ [(Al (¢2 — %A2X) — N1+ %A1X))]2
+ L {16 [(¢1 + 1Alx)2 +(¢2 — 1A2><)2 + X2]
N 2 2

- [A1(¢2 - %Azx) — Do(¢1+ %Av() + A1A2X]2 - (A1A2X)2} }

- g;{ <A1¢>’2 - A2¢>'1>2 * % [16 (qbli +¢5+ XZ) - <A1¢l2 — D¢y + A1A2X)2
- (81827 (4)
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e Performing the Gaussian summation over fiy, iy, m , and making

the transformation: ¢/ = \/_liAQ(Am + €jjdj1)

Path integral becomes:

5 /szD > [2%2(ﬁ2+1¢32)+2g4N2>'<2+V/(w,mx)] to(a*)
e 77 X e sites

VI (4, m,x) = {%(AW + ﬁ [16(n2 +7 4% - (Aw)ﬂ }

e Casting 1 in canonical form by 1 — /21 gives:
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Dispersion relations.

e The euclidean inverse propagators in the energy-momentum
space to the leading order are

¥ ps + M? + B2+ 0(a%)
n:ps + M? + O(a*)
X : M? + 0(a*); po = 0.

e 1) is a relativistic particle with mass M

e 1) may propagate due to higher order corrections.
e y do not fluctuate.
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On going work

@ Calculation of string tension.

@ Extending the same methods to higher dimensions.
© Inclusion of fermions.

@ Extension to SU(3)
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Thanks

Thank You for your Attention.
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